App Source Code:
GitHub Repository
Your Personal API Token:
MultilabelDTree Public API Endpoints:
Signs Up a User and sends him an Account Verification Email.
Request Body Example:
{ "fname": "yourFirstName", "lname": "yourLastName", "email": "yourEmail@email.com", "pass": "yourPassword", "pass_confirm": "yourPassword" }
Response Example:
{ "message": "User signed up successfully. Verification email sent." }
Logs in the User.
Request Body Example:
{ "email": "yourEmail@email.com", "pass": "yourPassword" }
Response Example:
{ "email": "yourEmail@email.com", "token": "yourToken", "fname": "yourFirstName", "lname": "yourLastName" }
Updates User's Information.
Request Body Example 1 (Updates User's Email):
{ "token": "yourToken", "email": "yourEmail@email.com" }
Response Example 1:
{ "message": "Verification email sent." }
Request Body Example 2 (Updates User's Credentials - Name or Password):
{ "token": "yourToken", "fname": "yourFirstName" | null, "lname": "yourLastName" | null, "pass": "yourPassword" | null, "new_pass": "yourNewPassword" | null, "new_pass_confirm": "yourNewPassword" | null }
Response Example 2:
{ "fname": "yourFirstName", "lname": "yourLastName" }
Deletes a User's Account.
Request Body Example:
{ "token": "yourToken", "pass_del": "yourPassword", "pass_del_confirm": "yourPassword" }
Response Example:
{ "message": "Account successfully deleted." }
Returns All Uploaded Public and Private Datasets.
Response Example:
{ "public_data": ["emotions.csv", "yeast.csv",…], "private_data": ["water-quality.csv", "flags.csv",…] }
Uploads a .csv Dataset.
Request Body Example:
Form Data: token: "yourToken" folder: "public | private" file: (Selected File)
Response Example:
{ "message": "Dataset successfully uploaded." }
Returns a Multilabel Dataset's Content.
Response Example:
{ "csv_array": [["landmass", "zone", "area", "population", "language",…],["3", "1", "29", "3", "6",…],["6", "3", "0", "0", "1",…],…], "numerical_fields": ["landmass", "zone", "area", "population", "language",…], "binary_fields": ["saltires", "crescent", "triangle", "icon", "animate",…] }
Deletes a Dataset.
Request Body Example:
{ "token": "yourToken", "folder": "public | private", "file": "selectedFile.csv" }
Response Example:
{ "message": "Dataset successfully deleted." }
Returns All Uploaded Unclassified Datasets.
Response Example:
{ "unclassified_data": ["emotions.csv", "yeast.csv", "flags.csv",…] }
Uploads an Unclassified .csv Dataset.
Request Body Example:
Form Data: token: "yourToken" file: {Selected File}
Response Example:
{ "message": "Dataset successfully uploaded." }
Returns an Unclassified Dataset's Content.
Response Example:
{ "csv_array": [["landmass", "zone", "area", "population", "language",…], ["3", "1", "29", "3", "6",…], ["6", "3", "0", "0", "1",…],…] }
Deletes an Unclassified Dataset.
Request Body Example:
{ "token": "yourToken", "file": "selectedFile.csv" }
Response Example:
{ "message": "Dataset successfully deleted." }
Returns All Pretrained Models.
Response Example:
{ "models_data": ["emotions_multilabelModel.pkl", "yeast_multilabelModel.pkl", "flags_multilabelModel.pkl",…] }
Returns a Multilabel Model's Content.
Response Example:
{ "columns": ["landmass", "zone", "colours", "circles", "icon", "animate"], "labels": ["saltires", "crescent", "triangle", "yellow"] "classifier_type": "BinaryRelevance", "max_depth": 12 "min_samples_leaf": 2 }
Deletes a Pretrained Model.
Request Body Example:
{ "token": "yourToken", "file": "selectedFile.pkl" }
Response Example:
{ "message": "Model successfully deleted." }
Returns All Decision Trees Visualization for the Selected Model.
Response Example:
{ "image": [ "http://localhost/MultilabelDTree/server/py/users/models/flags_multilabelModel_tree_1.png", "http://localhost/MultilabelDTree/server/py/users/models/flags_multilabelModel_tree_2.png", "http://localhost/MultilabelDTree/server/py/users/models/flags_multilabelModel_tree_3.png", … ] }
Builds a Multilabel Model with Auto Mode or by Selecting Specific Values for the Parameters, including the Problem Transformation Classifiers, DTrees and k-Fold Cross Validation Method. Finally, returns the Results of Evaluation Metrics.
Request Body Example:
{ "token": "yourToken", "folder": "public | private", "file": "selectedFile.csv", "features": ["feature1", "feature2", "feature3",…], "labels": ["label1", "label2", "label3",…], "classifier": "Auto" | "BinaryRelevance" | "LabelPowerser" | "ClassifierChain", "max_depth": "" | "Auto" | Integer, "min_samples_leaf": "Auto" | Integer, "kFoldsInt": Integer }
Response Example:
{ "avg_hl": avg_hamming_loss, "avg_acc": avg_accuracy "avg_pre": avg_precision, "avg_rec": avg_recall, "avg_fsc": avg_f1_score, "pre_per_label": [[precision_L1_v0, precision_L1_v1], [precision_L2_v0, precision_L2_v1], [precision_L3_v0, precision_L3_v1],…], "rec_per_label": [[recall_L1_v0, recall_L1_v1], [recall_L2_v0, recall_L2_v1], [recall_L3_v0, recall_L3_v1],…], "fsc_per_label": [[fscore_L1_v0, fscore_L1_v1], [fscore_L2_v0, fscore_L2_v1], [fscore_L3_v0, fscore_L3_v1],…], "labels": [[label1_value0, label1_value1], [label2_value0, label2_value1], [label3_value0, label3_value1],…], "classifier": best_classifier, "max_depth": best_max_depth "min_samples_leaf": best_min_samples_leaf, "k": k }
Saves the Created Multilabel Model to the User's Account.
Request Body Example:
{ "token": "yourToken", "folder": "public | private", "file": "selectedFile.csv", "features": ["feature1", "feature2", "feature3",…], "labels": ["label1", "label2", "label3",…], "classifier": "BinaryRelevance" | "LabelPowerser" | "ClassifierChain", "max_depth": "None" | Integer, "min_samples_leaf": Integer, "model_name": "yourModelName" }
Response Example:
{ "message": "Model successfully saved." }
Classifies the Selected Unclassified Dataset based on the Pretrained Model. Returns the Classified Data and the Results of Evaluation Metrics.
Request Body Example:
{ "token": "yourToken", "file": "selected_unclassified_file.csv", "model": "model_name.pkl", "features": ["modelFeature1", "modelFeature2", "modelFeature3",…], "labels": ["modelLabel1", "modelLabel2", "modelLabel3",…] }
Response Example:
{ "dataset": [["landmass", "zone", "colours", "circles", "icon", "animate", "predictions_L1", "predictions_L2",…], [3, 1, 3, 0, 0, 1, 0, 1,…], [6, 3, 5, 0, 1, 1, 0, 1,…],…], "avg_hl": avg_hl, "avg_acc": avg_acc, "avg_pre": avg_pre, "avg_rec": avg_rec, "avg_fsc": avg_fsc, "pre_per_label": [[precision_L1_v0, precision_L1_v1], [precision_L2_v0, precision_L2_v1],…], "rec_per_label": [[recall_L1_v0, recall_L1_v1], [recall_L2_v0, recall_L2_v1],…], "fsc_per_label": [[fscore_L1_v0, fscore_L1_v1], [fscore_L2_v0, fscore_L2_v1],…], "labels": [[label1_value0, label1_value1], [label2_value0, label2_value1], [label3_value0, label3_value1],…] }
MultilabelDTree Database:
Stores Users' Personal Information.
Columns Structure:
- id - INT (11)
- fname - VARCHAR (50)
- lname - VARCHAR (50)
- email - VARCHAR (50)
- pass - VARCHAR (100)
- token - VARCHAR (100)
- email_verification - TINYINT (1)
- public_permission - TINYINT (1)
Stores Information related to the Users' Account Verification.
Columns Structure:
- id - INT (11)
- user_id - INT (11)
- verif_key - VARCHAR (100)
- creation_time - TIMESTAMP
Stores Multilabel Models' Information.
Columns Structure:
- id - INT (11)
- user_id - INT (11)
- transformation_approach - VARCHAR (50)
- model_name - VARCHAR (50)
Stores Information related to the Labels of each Model.
Columns Structure:
- id - INT (11)
- model_id - INT (11)
- label_name - VARCHAR (100)