API Documentation
App Source Code: GitHub Repository
Your Personal API Token:
MultilabelDTree Public API Endpoints:

Signs Up a User and sends him an Account Verification Email.
Request Body Example:
{
    "fname": "yourFirstName",
    "lname": "yourLastName",
    "email": "yourEmail@email.com",
    "pass": "yourPassword",
    "pass_confirm": "yourPassword"
}
Response Example:
{
    "message": "User signed up successfully. Verification email sent."
}

Logs in the User.
Request Body Example:
{
    "email": "yourEmail@email.com",
    "pass": "yourPassword"
}
Response Example:
{
    "email": "yourEmail@email.com",
    "token": "yourToken",
    "fname": "yourFirstName",
    "lname": "yourLastName"
}

Updates User's Information.
Request Body Example 1 (Updates User's Email):
{
    "token": "yourToken",
    "email": "yourEmail@email.com"
}
Response Example 1:
{
    "message": "Verification email sent."
}
Request Body Example 2 (Updates User's Credentials - Name or Password):
{
    "token": "yourToken",
    "fname": "yourFirstName" | null,
    "lname": "yourLastName" | null,
    "pass": "yourPassword" | null,
    "new_pass": "yourNewPassword" | null,
    "new_pass_confirm": "yourNewPassword" | null
}
Response Example 2:
{
    "fname": "yourFirstName",
    "lname": "yourLastName"
}

Deletes a User's Account.
Request Body Example:
{
    "token": "yourToken",
    "pass_del": "yourPassword",
    "pass_del_confirm": "yourPassword"
}
Response Example:
{
    "message": "Account successfully deleted."
}

Returns All Uploaded Public and Private Datasets.
Response Example:
{
    "public_data": ["emotions.csv", "yeast.csv",…],
    "private_data": ["water-quality.csv", "flags.csv",…]
}

Uploads a .csv Dataset.
Request Body Example:
Form Data:
token: "yourToken"
folder: "public | private"
file: (Selected File)
Response Example:
{
    "message": "Dataset successfully uploaded."
}

Returns a Multilabel Dataset's Content.
Response Example:
{
    "csv_array": [["landmass", "zone", "area", "population", "language",…],["3", "1", "29", "3", "6",…],["6", "3", "0", "0", "1",…],…],
    "numerical_fields": ["landmass", "zone", "area", "population", "language",…],
    "binary_fields": ["saltires", "crescent", "triangle", "icon", "animate",…]
}

Deletes a Dataset.
Request Body Example:
{
    "token": "yourToken",
    "folder": "public | private",
    "file": "selectedFile.csv"
}
Response Example:
{
    "message": "Dataset successfully deleted."
}

Returns All Uploaded Unclassified Datasets.
Response Example:
{
    "unclassified_data": ["emotions.csv", "yeast.csv", "flags.csv",…]
}

Uploads an Unclassified .csv Dataset.
Request Body Example:
Form Data:
token: "yourToken"
file: {Selected File}
Response Example:
{
    "message": "Dataset successfully uploaded."
}

Returns an Unclassified Dataset's Content.
Response Example:
{
    "csv_array": [["landmass", "zone", "area", "population", "language",…], ["3", "1", "29", "3", "6",…], ["6", "3", "0", "0", "1",…],…]
}

Deletes an Unclassified Dataset.
Request Body Example:
{
    "token": "yourToken",
    "file": "selectedFile.csv"
}
Response Example:
{
    "message": "Dataset successfully deleted."
}

Returns All Pretrained Models.
Response Example:
{
    "models_data": ["emotions_multilabelModel.pkl", "yeast_multilabelModel.pkl", "flags_multilabelModel.pkl",…]
}

Returns a Multilabel Model's Content.
Response Example:
{
    "columns": ["landmass", "zone", "colours", "circles", "icon", "animate"],
    "labels": ["saltires", "crescent", "triangle", "yellow"]
    "classifier_type": "BinaryRelevance",
    "max_depth": 12
    "min_samples_leaf": 2
}

Deletes a Pretrained Model.
Request Body Example:
{
    "token": "yourToken",
    "file": "selectedFile.pkl"
}
Response Example:
{
    "message": "Model successfully deleted."
}

Returns All Decision Trees Visualization for the Selected Model.
Response Example:
{
    "image": [
        "http://localhost/MultilabelDTree/server/py/users/models/flags_multilabelModel_tree_1.png", 
        "http://localhost/MultilabelDTree/server/py/users/models/flags_multilabelModel_tree_2.png", 
        "http://localhost/MultilabelDTree/server/py/users/models/flags_multilabelModel_tree_3.png",
        …
    ]
}

Builds a Multilabel Model with Auto Mode or by Selecting Specific Values for the Parameters, including the Problem Transformation Classifiers, DTrees and k-Fold Cross Validation Method. Finally, returns the Results of Evaluation Metrics.
Request Body Example:
{
    "token": "yourToken",
    "folder": "public | private",
    "file": "selectedFile.csv",
    "features": ["feature1", "feature2", "feature3",…],
    "labels": ["label1", "label2", "label3",…],
    "classifier": "Auto" | "BinaryRelevance" | "LabelPowerser" | "ClassifierChain",
    "max_depth": "" | "Auto" | Integer,
    "min_samples_leaf": "Auto" | Integer,
    "kFoldsInt": Integer
}
Response Example:
{
    "avg_hl": avg_hamming_loss,
    "avg_acc": avg_accuracy
    "avg_pre": avg_precision,
    "avg_rec": avg_recall,
    "avg_fsc": avg_f1_score,
    "pre_per_label": [[precision_L1_v0, precision_L1_v1], [precision_L2_v0, precision_L2_v1], [precision_L3_v0, precision_L3_v1],…],
    "rec_per_label": [[recall_L1_v0, recall_L1_v1], [recall_L2_v0, recall_L2_v1], [recall_L3_v0, recall_L3_v1],…],
    "fsc_per_label": [[fscore_L1_v0, fscore_L1_v1], [fscore_L2_v0, fscore_L2_v1], [fscore_L3_v0, fscore_L3_v1],…],
    "labels": [[label1_value0, label1_value1], [label2_value0, label2_value1], [label3_value0, label3_value1],…],
    "classifier": best_classifier,
    "max_depth": best_max_depth
    "min_samples_leaf": best_min_samples_leaf,
    "k": k
}

Saves the Created Multilabel Model to the User's Account.
Request Body Example:
{
    "token": "yourToken",
    "folder": "public | private",
    "file": "selectedFile.csv",
    "features": ["feature1", "feature2", "feature3",…],
    "labels": ["label1", "label2", "label3",…],
    "classifier": "BinaryRelevance" | "LabelPowerser" | "ClassifierChain",
    "max_depth": "None" | Integer,
    "min_samples_leaf": Integer,
    "model_name": "yourModelName"
}
Response Example:
{
    "message": "Model successfully saved."
}

Classifies the Selected Unclassified Dataset based on the Pretrained Model. Returns the Classified Data and the Results of Evaluation Metrics.
Request Body Example:
{
    "token": "yourToken",
    "file": "selected_unclassified_file.csv",
    "model": "model_name.pkl",
    "features": ["modelFeature1", "modelFeature2", "modelFeature3",…],
    "labels": ["modelLabel1", "modelLabel2", "modelLabel3",…]
}
Response Example:
{
    "dataset": [["landmass", "zone", "colours", "circles", "icon", "animate", "predictions_L1", "predictions_L2",…], [3, 1, 3, 0, 0, 1, 0, 1,…], [6, 3, 5, 0, 1, 1, 0, 1,…],…],
    "avg_hl": avg_hl,
    "avg_acc": avg_acc,
    "avg_pre": avg_pre,
    "avg_rec": avg_rec,
    "avg_fsc": avg_fsc,
    "pre_per_label": [[precision_L1_v0, precision_L1_v1], [precision_L2_v0, precision_L2_v1],…],
    "rec_per_label": [[recall_L1_v0, recall_L1_v1], [recall_L2_v0, recall_L2_v1],…],
    "fsc_per_label": [[fscore_L1_v0, fscore_L1_v1], [fscore_L2_v0, fscore_L2_v1],…],
    "labels": [[label1_value0, label1_value1], [label2_value0, label2_value1], [label3_value0, label3_value1],…]
}
MultilabelDTree Database:

Stores Users' Personal Information.
Columns Structure:
  • id - INT (11)
  • fname - VARCHAR (50)
  • lname - VARCHAR (50)
  • email - VARCHAR (50)
  • pass - VARCHAR (100)
  • token - VARCHAR (100)
  • email_verification - TINYINT (1)
  • public_permission - TINYINT (1)

Stores Information related to the Users' Account Verification.
Columns Structure:
  • id - INT (11)
  • user_id - INT (11)
  • verif_key - VARCHAR (100)
  • creation_time - TIMESTAMP

Stores Multilabel Models' Information.
Columns Structure:
  • id - INT (11)
  • user_id - INT (11)
  • transformation_approach - VARCHAR (50)
  • model_name - VARCHAR (50)

Stores Information related to the Labels of each Model.
Columns Structure:
  • id - INT (11)
  • model_id - INT (11)
  • label_name - VARCHAR (100)